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Abstract
In this paper, we establish the existence of non-trivial solutions for a semi-
linear elliptic partial differential equation with a non-local term. This result
allows us to prove the existence of standing wave (ground state) solutions for a
generalized Davey–Stewartson system. A sharp upper bound is also obtained
on the size of the initial values for which solutions exist globally.

PACS number: 02.30.Jr
Mathematics Subject Classification: 35J20, 35Q55

1. Introduction

Here we are interested in establishing the existence of solutions to a semi-linear elliptic partial
differential equation with a non-local term:

�R − ωR − χR3 − bK(R2)R = 0, (1)

where ω, χ, b are real constants and R ∈ H 1(R2). The non-local term K(R2) has the
representation in the Fourier space as

K̂(f )(ξ) = α(ξ)f̂ (ξ) (2)

for ξ ∈ R2, where the symbol α(ξ) is assumed to be

(A1) homogeneous of degree zero,
(A2) 0 � α(ξ) � αM for all ξ ∈ R2 and for some αM > 0.

The motivation to consider this problem comes from the study of the standing wave
solutions of a generalized Davey–Stewartson (GDS) system [1], where the symbol α(ξ) has
the form

α(ξ) = λξ 4
1 + (1 + m1 − 2n)ξ 2

1 ξ 2
2 + m2ξ

4
2(

λξ 2
1 + m2ξ

2
2

)(
ξ 2

1 + m1ξ
2
2

) , (3)
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and satisfies the assumptions (A1) and (A2) with αM = max
{
1, 1

m1

}
. The Davey–Stewartson

(DS) system, where the symbol

α(ξ) = ξ 2
1

ξ 2
1 + ξ 2

2

(4)

also satisfies (A1) and (A2), has been studied by Cipolatti [2]. Later on, we have found that
a different, but more direct, approach was used by Papanicolaou et al [3] for the DS system.
Their work could be considered as an extension of the work of Weinstein [4] on nonlinear
Schrödinger (NLS) equation to the DS system, where the authors also established a more
precise upper bound on the initial values to guarantee the global existence of solutions. Here
we extend their approach to a NLS equation with more general non-local term, i.e. of the form
(2), and satisfying (A1) and (A2).

The local versions of problems of type (1), i.e. without the non-local K(R2)R term, have
been studied extensively by many authors, to name a few, Strauss [5], Coleman et al [6],
Berestycki and Lions [7, 8], Weinstein [4]. In the local case, one has the added advantage
of reducing the problem to that of radial solutions, hence utilizing the compact embedding of
H 1

r (R2) into Lp(R2) for p > 2 (i.e. Strauss’ lemma). Unfortunately, neither in the DS system
nor in the GDS system radial solutions exist for all parameter values. Hence one has to deal
with the non-compact embedding of H 1(R2) into Lp(R2). One remedy to this problem is
provided by the concentration-compactness technique of Lions [9, 10]. A slightly different
set of techniques were suggested in [7] when combined with the observations of Brezis and
Lieb [11]. This latter approach is the one preferred in the present work. An approach to derive
necessary conditions on solutions is succinctly described in [7] (see section 2 of [7], see also
Berestycki et al [12] for the n = 2 case).

In the next section starting from the GDS system, we first show its standing wave solutions
satisfy a non-local semi-linear elliptic equation of the form (1) and (2). The solutions of this
elliptic equation are sought by a variational approach. In this process, the cubic nature of both
the local and the non-local terms and scaling properties of different terms in the variational
formulation play a basic role. The lack of compact imbedding of H 1(R2) into Lp(R2) is
partially remedied as in [8, 11] by scaling properties of solutions. Pohozaev type identities are
derived in the process, theorem 2.1, that allow us some control over the nonlinear functional
to be minimized (see (35)). Our main theorem is theorem 2.2 and as a corollary, theorem 2.3,
we improve the global existence result for the solutions of the GDS system that was given
in [1].

2. Existence of standing wave solutions

As our main motivating example, we look for solutions of a coupled system given by

iut + uxx + uyy = χ |u|2u + b(ϕ1,x + ϕ2,y)u,

ϕ1,xx + m2ϕ1,yy + nϕ2,xy = (|u|2)x,
λϕ2,xx + m1ϕ2,yy + nϕ1,xy = (|u|2)y,

(5)

where t is a non-dimensional time variable whereas x and y are non-dimensional spatial
variables, u is the complex amplitude of the short transverse wave mode in the z direction
and ϕ1 and ϕ2 are the real long longitudinal and long transverse wave modes in the x and
y directions, respectively. This system has been derived to model wave propagation in an
infinite elastic medium made of an elastic material with couple stresses [13]. The system of
equations (5) may be called a generalized Davey–Stewartson (GDS) equation since it can



Standing waves for a generalized Davey–Stewartson system 13437

be reduced to the Davey–Stewartson (DS) equation through a nonlinear-dependent variable
transformation �x = ϕ1,x + ϕ2,y − 1

m1
|u|2:

iut + uxx + uyy =
(

χ +
b

m1

)
|u|2u + bu�x,

�xx + m1�yy =
(

1 − 1

m1

)
(|u|2)x,

(6)

when n = 1−λ = m1 −m2. A classification of the GDS system with respect to the parameter
values m1,m2 and λ is given in [1]. In the present study, the existence of standing waves for
the GDS system will be considered in the case where m1,m2 and λ are all positive.

Standing wave solutions are of the form

u(t, x, y) = eiωtR(x, y), ϕ1(t, x, y) = �1(x, y), ϕ2(t, x, y) = �2(x, y), (7)

where ω is a real constant, R ∈ H 1(R2) and ∇�1,∇�2 ∈ L2(R2). Then the real-valued
functions R,�1 and �2 satisfy

−ωR + Rxx + Ryy = χR3 + b(�1,x + �2,y)R,

�1,xx + m2�1,yy + n�2,xy = (R2)x,

λ�2,xx + m1�2,yy + n�1,xy = (R2)y.

(8)

The elliptic nature of the last two equations allows us to write system (8) as a single equation
for R by applying the Fourier transform. Taking Fourier transforms of (8)2 and (8)3 we find

�̂1 = iξ1

δ

(
nξ 2

2 − λξ 2
1 − m1ξ

2
2

)
f̂ , �̂2 = iξ2

δ

(
nξ 2

1 − ξ 2
1 − m2ξ

2
2

)
f̂ , (9)

where ξ = (ξ1, ξ2) are the Fourier transform variables, δ = (
λξ 2

1 + m2ξ
2
2

)(
ξ 2

1 + m1ξ
2
2

)
, f̂ =

F{R2} and �̂i = F{�i}, (i = 1, 2). Computing the Fourier transform of (�1,x + �2,y) gives

F{�1,x + �2,y} = α(ξ)f̂ (ξ), (10)

where α(ξ) is given by (3). Then formally we have K(R2) = �1,x +�2,y whose representation
in Fourier space is given by (2). Then system (8) can be written as

�R − ωR − χR3 − bK(R2)R = 0, (11)

where R ∈ H 1(R2), R �= 0.
To seek solutions of (11) we formulate an equivalent variational problem. As a first step,

we introduce a quadratic functional B on L2(R2) by

B(v) =
∫

K(v(x))v(x) dx = 〈K(v), v〉,

where 〈. , .〉 refers to L2(R2) inner product. Then, by the Plancherel theorem, we have∫
K(v(x))v(x) dx =

∫
α(ξ)|v̂(ξ)|2 dξ, (12)

where dx and dξ denote the area elements in x- and ξ -coordinates, respectively. The quadratic
functional B has a Fréchet derivative given by

〈B′(v), h〉 = 2
∫

K(v)h dx, (13)

since

‖B(v + h) − B(v) − 〈B′(v), h〉‖2 � αM‖h‖2
2.
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Within this framework, the non-trivial function R may also be regarded, at least formally, as a
solution of the variational problem δL(R) = 0, where

L(R) = 1

2

∫
R2

(|∇R|2 + ωR2 +
χ

2
R4) dx +

b

4
B(R2). (14)

In other words, the Euler–Lagrange equation of the variational problem defined by (14) is
given by (11).

Scalings of the solutions will play an important role in proving the existence of
solutions (1). Hence, following Derrick [14], we define scalings of v as follows:

vq,s(x, y) = qv(sx, sy). (15)

Then we have

‖vq,s‖2
2 = q2s−2‖v‖2

2, ‖vq,s‖4
4 = q4s−2‖v‖4

4, ‖∇vq,s‖2
2 = q2‖∇v‖2

2, (16)

where ‖ · ‖p denotes Lp(R2) norm. On the other hand,

B(|vq,s |2) =
∫

R2
K(|vq,s |2)|vq,s |2 dx =

∫
α(ξ)|f̂ q,s(ξ)|2 dξ

=
∫

α(ξ)q4s−2|f̂
(

ξ

s

)
|2 dξ = q4s−2B(|v|2), (17)

where α(sξ) = α(ξ) by (A1). It is worth emphasizing that under the scaling transformation
(15) the cubic nonlinearity and non-local term transform in the same way.

The next lemma summarizes the key properties of the linear operator K that is put to
immediate use in establishing some regularity and decay properties of the solutions of (11) in
theorem 2.1. Both of the results follow from the arguments given in [2] for DS equations with
minor modifications.

Lemma 2.1. Let K be the operator that is defined by (2) and satisfying (A1) and (A2), then

(a) K : Lp(R2) → Lp(R2) is bounded for all p ∈ (1,∞) and ‖K(f )‖2
2 � αM‖f ‖2

2,
(b) ∀s ∈ R, f ∈ Hs(R2) implies that K(f ) ∈ Hs(R2),
(c) If f ∈ Wm,p(R2) then K(f ) ∈ Wm,p(R2), moreover

∂kK(f ) = K(∂kf ). (18)

(d) The operator K preserves conjugation, translations and dilations.

Lemma 2.2. The solutions of (11) satisfy the following regularity properties:

(a) R ∈ ⋂∞
m=1 Wm,p(R2), for 2 � p < ∞,

(b) There exist positive constants c, ν such that

|R(x)| + |∇R(x)| � c e−νx, ∀x ∈ R2

and lim|x|→∞ K(R2)(x) = 0.

Using the scaling properties, we define Rs(x) = R(sx) to obtain

L(Rs) =
∫

R2

(
1

2
|∇Rs |2 +

χ

4
R4

s +
ω

2
R2

s +
b

4
K

(
R2

s

)
R2

s

)
dx,

=
∫

R2

(
1

2
|∇R|2 +

χ

4
s−2R4 +

ω

2
s−2R2 +

b

4
s−2K(R2)R2

)
dx.

Because R is a solution of (11), and therefore is a critical point for L(R), we have, at least
formally, a Pohozaev type identity(

d

ds
L(Rs)

)
s=1

= −1

2

∫
R2

(2ωR2 + χR4 + bK(R2)R2) dx = 0. (19)

A proof of the fact that any H 1 solution of (11) satisfies Pohozaev’s identity (19) will be given
in the next subsection.
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2.1. Necessary conditions

Some necessary conditions for the existence of a solution of (11) can be derived from the
following Pohozaev type identities.

Theorem 2.1. Let R satisfy equation

�R − ωR − χR3 − bK(R2)R = 0, (20)

where R ∈ H 1(R2). Then R satisfies the following Pohozaev type identities:∫
R2

(|∇R|2 − ωR2) dx dy = 0,

∫
R2

(2ω + χR2 + bK(R2))R2 dx dy = 0. (21)

Proof. Multiplying (20) by xRx and integrating over R2, after several integration by parts,
we obtain∫

R2

{
R2

x − R2
y − ωR2 − χ

2
R4

}
dx dy − bB(R2) − b

∫
R2

K(R2)xxR2 dx dy = 0, (22)

in which, by the Plancherel theorem,∫
R2

K(f )xxf dx dy =
∫

K̂(f )x (̂xf ) dξ1 dξ2

=
∫

ξ1α(ξ)f̂ f̂ ξ1 dξ1 dξ2

= −1

2

∫
[ξ1α(ξ)]ξ1(f̂ )2 dξ1 dξ2.

Thus we have∫
R2

{
R2

x − R2
y − ωR2 − χ

2
R4

}
dx dy − b

∫ {
α(ξ) − 1

2
[ξ1α(ξ)]ξ1

}
(f̂ )2 dξ1 dξ2 = 0. (23)

Similarly, multiplying (20) by yRy and integrating over R2, we also get∫
R2

{
R2

x − R2
y + ωR2 +

χ

2
R4

}
dx dy + bB(R2) + b

∫
R2

K(R2)yyR2 dx dy = 0, (24)

where ∫
R2

K(f )yyf dx dy = −1

2

∫
[ξ2α(ξ)]ξ2(f̂ )2 dξ1 dξ2.

Then (24) takes the form∫
R2

{
R2

x − R2
y + ωR2 +

χ

2
R4

}
dx dy + b

∫ {
α(ξ) − 1

2
[ξ2α(ξ)]ξ2

}
(f̂ )2 dξ1 dξ2 = 0. (25)

Finally, multiplying (20) by R and integrating over R2, we obtain∫
R2

{
R2

x + R2
y + ωR2 + χR4

}
dx dy + bB(R2) = 0. (26)

Subtracting (23) from (25) we obtain a Pohozaev type identity∫
R2

[2ω + χR2 + bK(R2)]R2 dx dy = 0, (27)

where a consequence of (A1), i.e. ξ1α(ξ)ξ1 + ξ2α(ξ)ξ2 = 0 is used. Combining this result with
(26) gives another Pohozaev type identity∫

R2
(|∇R|2 − ωR2) dx dy = 0, (28)
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clearly stating that ω > 0. Thus as a consequence of (27) we obtain the following necessary
conditions for the existence of solutions of (20):

ω > 0, χ‖R‖4
4 + b〈K(R2), R2〉 < 0. (29)

The last inequality is satisfied for all R in H 1(R2) when χ < min{−bαM, 0}. Combining the
two Pohozaev type identities (27) and (28), we also obtain∫

R2

(
|∇R|2 +

1

2
[χR2 + bK(R2)]R2

)
dx dy = 0. (30)

Pohozaev type inequalities also appear in the study of travelling wave solutions for the DS
system in the hyperbolic–elliptic case [15] and the GDS system in the hyperbolic–elliptic–
elliptic case [16]. �

2.2. Solution of the variational problem

As shown in [1], the GDS system in the EEE case has conserved quantities of the form

M(u) =
∫

R2
|u|2 dx dy,

H(u) =
∫

R2

{
|ux |2 + |uy |2 +

χ

2
|u|4 +

b

2

[
ϕ2

1,x + m2ϕ
2
1,y + λϕ2

2,x + m1ϕ
2
2,y

+ n(ϕ1,yϕ2,x + ϕ1,xϕ2,y)
]}

dx dy, (31)

that correspond to mass conservation and energy conservation, respectively. Using the
Plancherel theorem, we find

H(u) =
∫ (

|ξ |2|û|2 +
1

2
[χ + bα(ξ)]|f̂ |2

)
dξ, (32)

where (9) is used. Comparing (30) and (32) shows that Hamiltonian H for the ground state of
the GDS system is equal to zero:

H(R) =
∫

R2

(
|∇R|2 +

1

2
(χR2 + bK(R2))R2

)
dx = 0. (33)

Let us define R(x) = cR∗(x) where c > 0. Then we have∫
R2

|∇R∗|2 dx +
1

2

∫
c2(χ + bα(ξ))((̂R∗)2)2 dξ = 0. (34)

Multiplying (34) by ‖R∗‖2
2 allows us to define a functional associated with Hamiltonian of the

GDS system

J (v) = −2‖v‖2
2‖∇v‖2

2

χ‖v‖4
4 + b〈K(v2), v2〉 . (35)

In this subsection, the existence of ground states of the GDS system will be shown by proving
the existence of infimum of the nonlinear functional J (v) for the more abstract minimization
problem (35) under (A1) and (A2).

Theorem 2.2. Assume that ω > 0 and χ, b satisfy χ < min{−bαM, 0} where αM is a
constant appearing in (A2). Then the functional J (v) attains its minimum at a function R∗ in
H 1(R2), where R∗ satisfies

�R∗ − ωR∗ − c2(χR∗2 + bK(R∗2))R∗ = 0, (36)

where c2 = − 2ω
a

with a = χ‖R∗‖4
4 + b〈K(R∗2), R∗2〉 < 0.
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Proof. If we define vq,s(x, y) = qv(sx, sy), from (16), we have J (vq,s) = J (v). It follows
from χ < min{−bαM, 0} that for any R ∈ H 1(R2)χ‖R‖4

4 + b〈K(R2), R2〉 < 0 hence J is
defined and non-negative. Thus, there exists a minimizing sequence vn ∈ H 1(R2) ∩ L4(R2),
i.e.

j = inf
v∈H 1(R2)

J (v) = lim
n→∞ J (vn) < ∞. (37)

By choosing qn =
√

ω

‖∇vn‖2
and sn =

√
ω‖vn‖2

‖∇vn‖2
, we can define a normalized sequence R∗

n(x, y) =
qnvn(snx, sny) with the properties

‖R∗
n‖2

2 = 1, ‖∇R∗
n‖2

2 = ω,

J (R∗
n) = 2ω

−χ‖R∗
n‖4

4 − b〈K(
R∗2

n

)
, R∗2

n 〉 → j.
(38)

Since the sequence {R∗
n} is bounded in H 1(R2), a subsequence {R∗

nk
} converges weakly to

some R∗ in H 1(R2). By relabelling, if necessary, we will assume R∗
n ⇀ R∗ in H 1(R2). In

order to show the convergence is strong in H 1(R2), it will suffice to show that

‖R∗‖2
2 ≡ b1 = 1, ‖∇R∗‖2

2 ≡ b2 = ω, (39)

Clearly, 0 � b1 � 1 and 0 � b2 � ω. Similar to the argument given in [3], we must have
b1 �= 0 and b2 �= 0. Since j = inf J , we get

j � J (R∗) = 2‖R∗‖2
2‖∇R∗‖2

2

−χ‖R∗‖4
4 − b〈K(R∗2), R∗2〉 , (40)

or

−1

2

(
χ‖R∗‖4

4 + b〈K(R∗2), R∗2〉) � b1b2

j
� ω

j
. (41)

If we define wn = R∗
n − R∗, then it follows from R∗

n ⇀ R∗ in H 1(R2) that limn→∞ ‖wn‖2
2 =

1 − b1 and limn→∞ ‖∇wn‖2
2 = ω − b2. From (40) we have

j � J (wn) = 2‖wn‖2
2‖∇wn‖2

2

−χ‖wn‖4
4 − b

〈
K

(
w2

n

)
, w2

n

〉 → 2(1 − b1)(ω − b2)

lim
n→∞

(−χ‖wn‖4
4 − b

〈
K

(
w2

n

)
, w2

n

〉) . (42)

In order to calculate the limit of the denominator we rewrite it as

χ‖wn‖4
4 + b

〈
K

(
w2

n

)
, w2

n

〉 = χ
(‖wn‖4

4 − ‖R∗
n‖4

4

)
+ b

(〈
K

(
w2

n

)
, w2

n

〉 − 〈
K

(
R∗2

n

)
, R∗2

n

〉) − 2ω

j

(43)

using (38). The limit of the first term in (43) can be computed as in Brezis and Lieb [11]:

lim
n→∞

(‖w2
n‖4

4 − ‖R∗
n‖4

4

) = −‖R∗‖4
4. (44)

In order to calculate the limit of
〈
K

(
w2

n

)
, w2

n

〉 − 〈
K

(
R∗2

n

)
, R∗2

n

〉
, we rewrite

〈
K

(
w2

n

)
, w2

n

〉
as

follows:〈
K

(
w2

n

)
, w2

n

〉 =
∫

R2
w2

nK
(
R∗2

n

)
dx +

∫
R2

w2
nK(R∗2) dx − 2

∫
R2

R∗
nR

∗K
(
w2

n

)
dx,

= 〈
K

(
R∗2

n

)
, R∗2

n

〉
+

∫
R2

w2
nK(R∗2) dx

+
∫

R2
(R∗2 − 2R∗

nR
∗)K

(
R∗2

n

)
dx − 2

∫
R2

R∗
nR

∗K
(
w2

n

)
dx, (45)
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where K is a self-adjoint operator. Because {R∗
n} is bounded in H 1(R2)∩L4(R2), it is possible

to show that w2
n converges weakly to zero in L4(R2). As a result of this

∫
R2 w2

nK(R∗2) dx

converges to zero. We now show that∫
R2

(R∗2 − 2R∗
nR

∗)K
(
R∗2

n

)
dx → −

∫
R2

R∗2K(R∗2) dx. (46)

Indeed, by applying the Cauchy-Schwarz inequality we obtain∣∣∣∣
∫

R2
(R∗2 − 2R∗

nR
∗)K

(
R∗2

n

)
dx +

∫
R2

R∗2K(R∗2) dx

∣∣∣∣
�

∣∣∣∣
∫

R2
wn(R

∗
n + R∗)K(R∗2) dx

∣∣∣∣ + 2

∣∣∣∣
∫

R2
wnR

∗K
(
R∗2

n

)
dx

∣∣∣∣,
�

(∫
R2

w2
nK2(R∗2)dx

) 1
2
(∫

R2
(R∗

n + R∗)2 dx

) 1
2

+ 2

(∫
R2

w2
nR

∗2 dx

) 1
2
(∫

R2
(K2

(
R∗2

n

)
dx

) 1
2

→ 0,

since w2
n converges weakly to zero in L4(R2). In the same spirit, we have∣∣∣∣

∫
R2

R∗
nR

∗K
(
w2

n

)
dx

∣∣∣∣ �
(∫

R2
K2

(
w2

n

)
R∗2 dx

) 1
2
(∫

R2
R∗2

n dx

) 1
2

. (47)

The right-hand side of this inequality tends to zero as n → ∞ since w2
n ⇀ 0 and consequently

K
(
w2

n

)
⇀ 0 in L4(R2) by lemma 2.1(a), and therefore K2

(
w2

n

)
⇀ 0 in L2(R2). Finally we

obtain the limit as

lim
n→∞

(〈
K

(
w2

n

)
, w2

n

〉 − 〈
K

(
R∗2

n

)
, R∗2

n

〉) = −〈K(R∗2), R∗2〉. (48)

The limit of the denominator in (42) is then

lim
n→∞

(−χ‖wn‖4
4 − b〈K(

w2
n

)
, w2

n〉
) = χ‖R∗‖4

4 + b〈K(R∗2), R∗2〉 +
2ω

j
, (49)

and, consequently

j � J (wn) → 2(1 − b1)(ω − b2)

χ‖R∗‖4
4 + b〈K(R∗), R∗2〉 +

2ω

j

. (50)

Arranging this inequality we get

ω

j
� (1 − b1)(ω − b2)

j
+

b1b2

j
� ω

j
. (51)

Since 0 < b1 � 1 and 0 < b2 � ω, there is only one solution for the following equation:

b2(b1 − 1) + b1(b2 − ω) = 0, (52)

which is b1 = 1 and b2 = ω. This result shows that the minimizing sequence {R∗
n} converges

R∗ strongly in H 1(R2) ∩ L4(R2). The limit R∗ satisfies the Euler–Lagrange equation (36)
corresponding to the minimization problem. Then R = cR∗ satisfies

�R − ωR − (
χR2 + bK(R2)

)
R = 0,

hence is a solution of (1). �
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Corollary. −(
χ‖v‖4

4 + b〈K(v2), v2〉) � Copt‖v‖2
2‖∇v‖2

2 where Copt = 2
‖R‖2

2
and R is a

solution of (1).

Proof. Since J (v) = − 2‖v‖2
2‖∇v‖2

2

χ‖v‖4
4+b〈K(v2),v2〉 , we have

−(
χ‖v‖4

4 + b〈K(v2), v2〉) = 2

J (v)
‖v‖2

2‖∇v‖2
2 � 2

inf J (v)
‖v‖2

2‖∇v‖2
2,

where ‖R‖2
2 = inf J (v). �

This Sobolev type estimate enables us to give an upper bound on the initial amplitude of
the wave for the global existence of solutions to the GDS system.

Theorem 2.3. Consider the GDS system (5). If ‖u0‖2 < ‖R‖2 and χ < min{−bαM, 0},
where u0 is the initial wave amplitude in H 1(R2) and R is an H 1(R2) ground state solution of
GDS, then the corresponding solution of the GDS system is global.

Proof. Because M(u) = ∫
R2 |u|2dxdy is constant, it will be sufficient to show that

‖∇u‖2
2 is bounded. Using the Hamiltonian of the GDS system (32) and the upper bound

for − (
χ‖u‖4

4 + b〈K(u2), u2〉), we have

‖∇u‖2
2 = H(u) − 1

2

(
χ‖u‖4

4 + b〈K(u2), u2〉)
� H(u) +

‖u‖2
2‖∇u‖2

2

‖R‖2
2

= H(u0) +
‖u0‖2

2‖∇u‖2
2

‖R‖2
2

.

Thus if ‖u0‖2 < ‖R‖2, then ‖∇u‖2
2 remains bounded, i.e. the solution of GDS is global. �
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[10] Lions P-L 1984 The concentration-compactness principle in the calculus of variations. The locally compact

case. Part 2 Ann. Inst. H. Poincaré Analyse non linéaire 1 223–83
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